Introduction to Risk

- Risk can be broadly defined as the degree of uncertainty about future net returns
- Credit risk relates to the potential loss due to the inability of a counterpart to meet its obligation
- Operational risk takes into account the errors that can be made in instructing payments or settling transactions
- Liquidity risk is caused by an unexpected large and stressful negative cash flow over a short period
- Market risk estimates the uncertainty of future earnings, due to the changes in market conditions
- Broadly the standard deviation of the variable measures the degree of risk inherent in the variable.
- Say the standard deviation of returns from the assets owned by you is 50% and the standard deviation of returns from assets I own is 0%. We can say that risk of my assets is zero.

Value at Risk (VAR)

- Value at Risk (VaR) has become the standard measure that financial analysts use to quantify this risk.
- VAR represents maximum potential loss in value of a portfolio of financial instruments with a given probability over a certain time horizon.
- In simpler words, it is a number that indicates how much a financial institution can lose with probability (p) over a given time horizon (T).
- Say the 95% daily VAR of your assets is $\$ 120$, then it means that out of those 100 days there would be 95 days when your daily loss would be less than $\$ 120$. This implies that during 5 days you may lose more than $\$ 120$ daily.

There may be a day out of 100 when your loss is $\$ 5000$, which means VAR doesn't tell anything about the extent to which we can lose

Visualizing VAR

PRISTINE

Confidenc $\mathrm{e}(\mathrm{x} \%)$	$\mathrm{Z}_{\mathrm{x} \%}$
90%	1.28
95%	1.65
97.5%	1.96
99%	2.32

- The colored area of the normal curve constitutes 5% of the total area under the curve.
- There is 5% probability that the losses will lie in the colored area i.e. more than the VAR number.

Measuring Value-at-Risk (VAR)

$-Z_{X \%}$: the normal distribution value for the given probability ($\mathrm{x} \%$) (normal distribution has mean as 0 and standard deviation as 1)

- σ : standard deviation (volatility) of the asset (or portfolio)
- VAR in absolute terms is given as the product of VAR in \% and Asset Value:

$$
V A R=V A R_{X \%}(\text { in } \%)^{*} A s s e W a l u \epsilon
$$

- This can also be written as:

$$
V A R=Z_{X \%} * \sigma^{*} \text { AsseValuє }
$$

Measuring Value-at-Risk (VAR)

- VAR for n days can be calculated from daily VAR as:

$$
\operatorname{VaR}_{\text {(ndays) }}(\mathrm{in} \%)=\operatorname{VaR}_{\text {dailyaR) }}(\mathrm{in} \%)^{*} \sqrt{\mathrm{n}}
$$

- This comes from the known fact that the n-period volatility equals 1-period volatility multiplied by the square root of number of periods(n).

$$
\mathrm{VaR}_{\text {ndays) }}(\mathrm{in} \%)=\mathrm{Z}_{\mathrm{X} \%} * \sigma^{*} \text { AssetValue } \sqrt{\mathrm{n}}
$$

- As the volatility of the portfolio can be calculated from the following expression:

$$
\sigma_{\text {portfolio }}=\sqrt{w_{\mathrm{a}}^{2} \sigma_{\mathrm{a}}^{2}+\mathrm{w}_{\mathrm{b}}^{2} \sigma_{\mathrm{b}}^{2}+2 \mathrm{w}_{\mathrm{a}} \mathrm{w}_{\mathrm{b}} * \sigma_{\mathrm{a}} * \sigma_{\mathrm{b}} * \rho_{\mathrm{ab}}}
$$

- The above written expression can also be extended to the calculation of VAR:

$$
\operatorname{VaR}_{\text {portfolid }}(\operatorname{in} \%)=\sqrt{w_{\mathrm{a}}^{2}\left(\% \mathrm{VAR}_{\mathrm{a}}\right)^{2}+\mathrm{w}_{\mathrm{b}}^{2}\left(\% \mathrm{VAR}_{\mathrm{b}}\right)^{2}+2 \mathrm{w}_{\mathrm{a}} \mathrm{w}_{\mathrm{b}} *\left(\% \mathrm{VAR}_{\mathrm{a}}\right) *\left(\% \mathrm{VAR}_{\mathrm{b}}\right) * \rho_{\mathrm{ab}}}
$$

Question 1

- Asset daily standard deviation is 1.6%
- Market Value is USD 10 mn
- What is $\operatorname{VaR}(\%)$ at 99% confidence?
- Solution: Daily VaR $=0.016 \times 10 \times 2.33=0.3728 \mathrm{mn}$

Question 2

- What is the VaR value for 10 day VaR in the earlier case?
- Solution: 10 day $\operatorname{VaR}=0.3728 \times(10)^{\wedge} 0.5=1.1789$

Question 3

- What is the daily portfolio VaR at 97.5% confidence level?
- Investment in asset A is Rs. 40 mn
- Investment in asset B is Rs. 60 mn
- Volatility of asset A is 5.5% and asset B is 4.25%
- Portfolio VaR if correlation between A and B is 20% ?

Solution:
$\operatorname{VaR}(\mathrm{A})($ in $\%)=5.5 \times 1.96=10.78 \% ; \operatorname{VaR}(\mathrm{B})($ in $\%)=4.25 \times 1.96=8.33 \%$;

Portfolio VaR $=\left[(40 \times 0.1078)^{2}+(60 \times 0.0833)^{2}+2 \times 0.1078 \times 0.833 \times 40 \times 60 \times 0.20\right]^{0.5}$
$=7.22 \mathrm{mn}$

Extended Question 3.1

PRISTINE

- Portfolio VaR if
- If correlation between A and B is Zero?
- What if correlation is 1 ?
- Or if -1 ?
- What are the implications ?

Question 4

PRISTINE

- Market Value of asset Rs. 10 mn
- Daily variance is 0.0005
- What is the annual VaR at 95% confidence with 250 trading days in a year?
- Solution;

Daily VaR $=10 \times(0.0005)^{0.5} \times 1.65=0.36895 \mathrm{mn}$
Annual $\operatorname{VaR}=0.36895 \times(250)^{0.5}=5.834 \mathrm{mn}$

Question 5

- For an uncorrelated portfolio what is the VaR if:
- VaR asset A is Rs 10 mn
- VaR asset B is Rs. 20 mn

Solution: This would require weights of the assets. Assuming it to be 50-50, the VaR comes out to be 11.18 mn

